"Pay attention to the world." -- Susan Sontag
 

Capturing the Elusive Tiger Lily (1 of 2)

From “Treasure Hunts in East Asia” in Lily (Botanical) by Marcia Reiss:

“European collectors did not open the treasure chest of lilies in East Asia fully until the nineteenth and early twentieth centuries. One of the first and most popular discoveries, the tiger lily, L. lancifolium, was sent from Canton (now Guangzhou) to Kew Gardens in London by William Kerr in 1804….

“A Turk’s cap lily, it forms tiny black bulbils in each leaf axis, making it easy to propagate. The Chinese had a charming anthropomorphic description for its downward-facing form and reflexed petals — the ‘Flower that turns its Head to See its Offspring’. But the Japanese saw it quite differently. Its Japanese name is
oniyuri, the ogre lily, and while its orange colour may account for the name tiger lily, its speckled petals seem more reminiscent of a leopard, albeit one with purple spots. (There is also a panther lily, L. pardalinum, a Turk’s cap species found in California, but it also has spots.)

“A few orange-coloured lilies had made earlier appearances. L. bulbiferum, native to central Europe, is a remarkably realistic detail in the Portinari Altarpiece, of the Adoration of the Shepherds, commissioned by the Medici from the south Netherlandish painter Hugo van der Goes in 1475. It gets its name from the bulbils in its leaf axis, like those of the tiger lily….”

From “The Lily” in The Collected Earlier Poems by William Carlos Williams:

The branching head of
tiger-lilies through the window
in the air —

A humming bird
is still on whirring wings
above the flowers —

By spotted petals curling back
and tongues that hang
the air is seen —

It’s raining —
water’s caught
among the curled-back petals

Caught and held
and there’s a fly —
are blossoming


Hello!

The mid- to late-summer floral displays at Oakland Cemetery feature various collections of lilies, amaryllis, and crinum — collections that, as a whole, rival the diversity of their seasonal predecessors (irises and daylilies) and their seasonal successors (asters and mums). Over the next several weeks, we’ll take a look at some of these species — flowers and plants whose scientific identification is often challenging, as many of them have multiple shared common names stemming from similar visual characteristics, but have botanical stories that are very different.

I decided to start this next post run with Tiger Lilies (Lilium lancifolium), because this is the first summer in three years that I managed to catch them in bloom. The bloom time of amaryllis, crinum, and many other lilies is quite predictable, but the Tiger seems to slide its blooming by several earlier or later weeks depending on weather conditions preceding the plant’s emergence from the soil. In those years I’ve gotten it to pose for photoshoots, we’ve held those shoots as early as the first week of June and as late as mid-July. This year — when I was out still photographing daylilies — I noticed the Tiger Lilies just starting to produce flower buds on June 7, so went back exactly two weeks later to find this nice grouping of flowers ready to capture.

The quotation from the book Lily (Botanical) by Marcia Reiss above serves as a useful way to kick off these lily posts. The author introduces the Tiger Lily’s official name, Lilium lancifolium — a replacement name for Lilium tigrinum, from which the Tiger Lily common name was derived. She also mentions the Japanese name “ogre lily” — which I had not heard before, though I’ve seen in my research that the Tiger Lily has also been referred to as a Leopard Lily, Devil Lily, Orange Lily, and Pine Lily, depending on the resource I’ve come across and its connection to a particular region or vernacular. While we don’t need to be too concerned about these variations, it can be fun to observe how they’re used when we humans encounter plants in different historical eras or contexts. Here we’ll stick with Lilium lancifolium and Tiger Lily as the most accurate and prevalent current usage.

Reiss describes the Tiger Lily as a “Turk’s cap lily” — a phrase that is often used to describe some specific lily cultivars, including the Tiger Lily. Most accurately, though, “Turk’s cap” is best used as a description of a lily form rather than a specific lily. “Turk’s cap” describes the way the flower petals of some lilies curve upward and meet at the center, reminiscent of the way a turban is assembled. While people — including me — often call some lily variants by the name “Turk’s Cap Lily,” we’ve learned more about the subtle distinctions in plant naming conventions so will no longer do that.

I noticed Reiss’s mention of “bulbils” because Wikipedia’s article about Lilium lancifolium describes the Tiger Lily like this:

L. lancifolium produces aerial bulblets, known as bulbils, in the leaf axils. These bulbils are uncommon in Lilium species and they produce new plants that are clones of the original plant. The flowers are odorless. Each lasts a few days and if pollinated produce capsules with many thin seeds.”

This excerpt is only four sentences, but there’s actually a lot going on here that is fascinating to learn about once you uncover how significant it is that “bulbils are uncommon in Lilium species” and that the bulbils “produce new plants that are clones of the original plant.” This means that Tiger Lilies — along with a consequential minority of other lilies — employ dual natural reproduction strategies: reproduction aided by pollination, which, as one might expect, would produce related but genetically different plants; and the production and dispersal of bulbils, which produce exact clones of the plant that distributed them. And while you may encounter sources referring to these berry-looking globes as seeds, they’re not seeds at all. They are, in effect, mini-me versions of the original plant, whose escapades — described here — go like this:

“Two of the best-known bulbiliferous plants are Lilium bulbiferum of Europe and L. lancifolium of Asia. The latter species is common in cultivation and has naturalized in North America and Europe. Both species form bulbils in the axils of the leaves. In Lilium lanceolatum, the margins of the leaves are turned up slightly where the leaves join the stem. Raindrops landing on the leaves are channeled toward the stem and dislodge bulbils (ombrohydrochory), causing them to fall to the ground. Bulbils dispersed by raindrops land near the parent plant and might be carried farther by sheet flow or runoff. If not dislodged by rain, the bulbils eventually fall when the stem senesces at the end of the growing season.”

Since I captured these Tiger Lilies early in their blooming cycle — when most of the plants had one flower in bloom, with one waiting on the side to bloom later — their bulbil production was also in its early stages. Here’s one of the plants in a tight closeup, where you can see two bulbils positioned exactly as described above, with the leaves slightly folded and angled to catch and channel raindrops to help detach the bulbils.

The bulbil on the right demonstrates yet another feature of their production: those half-dozen black dots just below the red circle are not spots; they’re bulbils that didn’t form fully and so were pushed down the leaf in favor of one bulbil growing to maturity. This pattern illustrates how the plant allocates its energy resources: since it must divide that energy between flower and bulbil production in its two-part reproductive strategy — and respond to environmental conditions at the same time — it may produce some bulbils that don’t fully form while working on developing its spectacular flowers.

That bulbil-making plants like the Tiger Lily produced exact clones of their source plant would have been a twentieth-century discovery, requiring the scientific methods and tools to analyze plant DNA. Earlier botanists might have observed, by contrast, that the bulbils produced new plants — by a method similar to that of seed or bulb distribution — but would not have understood the natural cloning or clonal reproduction that would be proven much later. As I discussed in several of my iris project posts, these botanists often relied on evidence presented in botanical drawings and combined that with their fieldwork to theorize about plant behavior. So it’s not surprising to find drawings or watercolors of Tiger Lilies with their bulbils in the 17th, 18th, and 19th centuries — like this pair by Pierre-Joseph Redouté (from Volume 7 and Volume 8 of his book about lilies Les Liliacées [The Lilies]), where the bulbils are as prominently featured as the flower blossoms themselves:

These accurate renderings served both artistic and scientific purposes, especially in the eras of botanical exploration that preceded pervasive use of photography. Both drawings show exactly the positioning of bulbils discussed earlier: each bulbil emerges near the connection of leaves to the stems, with each leaf slightly curved and angled downward to enable the bulbils to slide from the plant to the ground, especially during a rain. Botanists working with such Tiger Lilies likely would have observed and drawn conclusions about how this natural behavior enabled Tiger Lilies to spread, with those observations and conclusions providing the basis from which later discoveries would determine that the new plants were duplicates of the originals.

In the next post, I’ll explore the visual characteristics of these flowers, and what else — besides bulbils — photographs of them can reveal, well beyond how photogenic they are to the camera and how delightful they are to see (and re-discover) in real life.

Thanks for reading and taking a look!











Red and Yellow Daylilies (3 of 3)

From “History of the Daylily” in The Illustrated Guide to Daylilies by Oliver Billingslea:

“[Dr. Arlow B. Stout] produced many early hybrids which served as source material for other hybridizers. He registered his first cultivar, H. ‘Mikado’ in 1929. One of his most significant achievements was the cultivar ‘Theron’ (1934), which became the forerunner of red daylilies. In the 1930s, a large number of scientists and amateurs became involved with the hybridization of daylilies, swelling the number of registrations.

“When in 1937 it was found that colchicine, an alkaloid isolated from the autumn crocus (
Colchicum autumnale), was successful as an agent for increasing chromosome numbers, a major breakthrough occurred. Colchicine doubles the diploid number of chromosomes (most species found in the wild are diploids) by acting upon the cells which are dividing, resulting in induced ‘tetraploid‘ daylilies, which have twice the number of chromosomes and increased breeding potential. Today’s hybrids are either diploid or tetraploid, since hybridizers’ efforts have continued along both lines.

“In the eyes of most, the modern daylily has far surpassed the species in beauty. Originally the only colors were yellow, orange, and shades of fulvous red, but today’s hybrids range from near-white to rich purple, from lovely pastels to fabulous blends, from the brightest yellow to the most vivid red, and there is progress toward the blue, especially in the eyezones of daylilies….


“There are many daylilies that are eyed, banded, edged, watermarked, or patterned. Improved flower substance, sun-fastness, increased petal width, and intense ruffling have become realized goals. There are miniatures, small flowers, large and extra-large flowered ones. Relation of scape height to flower size has been improved, better branching achieved, and marvelous variation in form perfected, from spider to full, rounded blooms. Doubles are now full and elegant, and polymerous, sculptured, and other unique forms continue to emerge. In addition to all of this, major efforts have been made to extend the blooming season by breeding for ‘remontant’ or reblooming cultivars, and hybridizers are more aware than ever for needed disease resistance and vigor. Today there are over 77,000 registered cultivars.”


Hello!

This is the third of three posts with photos of red and yellow daylilies that I took during two June trips to Oakland Cemetery. The first post is Red and Yellow Daylilies (1 of 3) and the second post is Red and Yellow Daylilies (2 of 3).

For this last post, I’ve revisited some of the photos from the previous two posts, with tighter zooms to provide a close-up look at the flowers’ central structures. Whenever I take close-ups like this, one of my goals is to ensure that all the stamens and pistils are in focus. Even though those aren’t necessarily the focal point or what will strike you as the subject of the photo, getting their focus correct typically means that, at least, the petals are in focus at the point where they emerge from each flower’s center. This means two things when I process the photos in Lightroom: (1) I can create separation between the stamens and pistils and the rest of the flower, giving them a three-dimensional appearance; and (2) I can crop the photos to get an even more macro look at their structures. Here, for example, is a 200% zoom on one of the photos:

Zooming in this much is a bit extreme, because any noise or grain in the image will also be more visible. But if you click on the image for a larger version, note how — despite the now-visible noise or grain — the stamens and pistils are in focus from where they emerge from the flower to their ends. When I come back from a photoshoot of flowers like this (or one of any flowers that have similar long, prominent center structures), that’s one of the first things I’ll check to decide if I’ve captured a usable image. If the stamens and pistils are not in focus, then nearby flower petals would also likely be out of focus, and their colors would appear to blend or merge with the colors behind them. Those that don’t make this cut get cut, so I don’t spend time working on a photo that is not in sharp focus to begin with.

The quotation at the top of this post tells us a little about how it became possible for breeders to produce daylilies with extra-large flowers and these smashing arrangements of colors. The discovery that a chemical extracted from another plant — in this case, a crocus variant — would double the amount of genetic material that geneticists could use to influence a daylily’s colors, shape, size, or number of blooms is similar to something I wrote about while working on my iris project. In my previous post, Nature’s Palette: Exploring Iris Colors, Their Culture, and Their History (9 of 10), I described the “conversion from diploids to tetraploids” — and, as it turns out, the same chemical, and the same mechanisms, were used to genetically enhance both irises and daylilies. This discovery and its application ushered in the extremely active breeding and modification period for both irises and our gorgeous daylilies that ran from the mid- to late-twentieth century, each effort extending their appearance (in the ways Billingslea explains above) from their Hemerocallis fulva or Hemerocallis flava origins.

Thanks for reading and taking a look!











Red and Yellow Daylilies (2 of 3)

From “The Botanical Characteristics of Daylilies” in Daylilies: The Wild Species and Garden Clones, Both Old and New, of the Genus Hemerocallis by Arlow B. Stout:

“In appearance, habits of growth, and botanical characteristics, the daylilies form a rather sharply defined group of plants known as the genus Hemerocallis….

“The daylilies are all herbaceous perennials. The parts which appear above ground and are conspicuous as the plants grow in gardens are the leaves, the flower stalks or scapes, and the flowers.

“The stems are in the soil or extending slightly above its surface. In temperate regions the foliage of most daylilies dies to the ground in autumn or is killed during early winter and the plant is dormant until spring arrives. In the tropics many daylilies are evergreen.

“The leaves of daylilies are linear, strongly ribbed, and arranged in two ranks that are closely compacted and equitant at the base and that spread gracefully above to form a symmetrical ‘fan.’ In the disposition, height, and color of the leaves there is considerable diversity among species and garden clones.

“The flower stalks or scapes arise directly from the crown in the midst of a cluster of leaves. They are naked except for leaf-like bracts at the few nodes and subtending the branches and the flowers. The scapes are slender, erect or ascending, and branched or unbranched at the top according to the character of the species.

“The flowers of daylilies are large and colorful. In the general appearance of the perianth, six stamens, and single pistil they resemble the flowers of the genus
Lilium; but they are shorter lived, in some types lasting for one day only, and the six segments of the showy perianth are united at the base to form a well-defined tube. The flower colors for the different species range from pale yellow through shades of yellow and orange to combinations with fulvous red. In the newer hybrids the colors have been extended especially into rosy pink, red, and purplish shades.”

From “The Flower” in The Illustrated Guide to Daylilies by Oliver Billingslea:

Sculpted daylilies are… defined by several forms. Relief sculpting is characterized by vertically raised ridges that extend from the throat and project from the petal surface. The ridges may grow parallel to the veins, or they may radiate outwards from each side of the midrib. Pleated sculpting occurs when petals have a deep longitudinal crease on each side of the midrib. These creases cause folding of the petal upon itself creating a raised platform extending from the top of the perianth and ending between the throat and the petal tip. Cristate defines a form of sculpting that refers to appendages of extra petal tissue growing from the midrib or elsewhere on the surface of the petals. When the extra tissue grows from the midrib, the form is called midrib cristate.

“Edges, or the outer periphery of the petals and sepals of daylilies, can possess structural distinction as well, such as
knobs, braids, tentacles, fringe, and teeth. Some structural edges reach out onto the surface of the flower giving a sculpted three-dimensional effect.”


Hello!

This is the second of three posts with photos of some red and yellow daylilies that I took during two June trips to Oakland Cemetery. The first post is Red and Yellow Daylilies (1 of 3).

In the previous post, I included this photograph showing where these daylilies hang out and mentioned that I took this photo on my first visit, when only one of the flowers was in bloom. I’ve also included it in this post, so we can speculate on how this arrangement of plants affects both our visual perception of their forms and colors, as well as the growth patterns of the plants and their individual blossoms.

We tend to experience scenes like this holistically, as a single small garden constrained by stone and concrete boundaries. But even this limited space contains a large number of environmental variables, all of which have an impact on the growth and blooming patterns of its plants. If we think of this scene as a micro-environment or micro-climate instead, we can then imagine that factors like water absorption and retention, protection from adverse weather conditions, or sun exposure might vary significantly for some plants over others. We can see, for example, that the plants in the lower left corner receive the most sunlight throughout the day, exposing those plants to the sun for the longest continuous periods. The plants at the right and toward the back left get more shade as the sun passes behind the trees and shrubs surrounding the monument. The back-left plants get very little sun much of the day; and, unsurprisingly, have far fewer blooms than the rest of the plants.

Here are three representative photos from the galleries below.

I took the first two at the sunny left corner, the first one when the sun was out and the second one when it slipped behind clouds for a few minutes. This diminished sunlight shifts several colors from warmer (with more yellow light) to cooler, where yellow light is filtered out by the clouds and blue light wavelengths become more prominent. This is why we see the second photo’s yellow as more like orange, and its red/magenta as more like purple or burgundy — an effect not unlike taking cans of paint with those colors and mixing in a bit of blue. Even the bricks in the background of that second photo take on a cooler, more blue appearance, and some of that blue is reflected back into the camera, contributing to the shift from warm to cool colors. And — as I mentioned several times in my iris project posts — shaded or filtered sunlight lets us crank up color saturation in photos taken in those conditions without distorting their appearance or relationships, so we can reveal an intensity and variability in the flower colors that isn’t as apparent among those taken in the sun.

In terms of flower forms, the first two are more alike than they might initially appear, simply because they’re at different stages in their lifecycle, with the first flower in an earlier stage than the second. A day or two after I took these photos, the two would have looked more alike, with their petals dropping into a similar horizontal position. The flower in the third photo, however, looks quite a bit different, almost as if it was a different variety with a more downward, convex form — one that’s similar to a recurved daylily where the flowers present as more circular and its petals bend downward toward the flower’s base.

While it’s not impossible that these daylilies have propagated their own variants — the number of plants has, after all, expanded over the years I’ve photographed them — it’s more likely that we’re seeing an environmental effect. The flower in the third photo receives far less sunlight than those in the first two photos, leading it to adapt to those conditions by producing downward-facing petals that can capture light coming from different directions. It’s not simply forming an alternate flower shape for observers to wonder about; it’s responding to its environment by creating a form that will optimize its ability to take advantage of its less optimal position in the garden.

It also demonstrates variations in the shapes of knobs, braids, or fringes along the edges of the petals that are different from the first two sun-bathed photos. The production of that fringing requires a significant amount of plant energy, so those that capture less light are consequently less capable of producing petals that incorporate extensive corkscrew-like shapes along the flower’s edges. While the fringing does exist, it’s less pronounced and less likely to appear along all the petal edges, but more likely to occur only where individual petals get the most light.

With this information in mind, you could now examine the photos and make educated guesses about which ones receive full sunlight, which ones receive sunlight filtered by nearby trees, and which ones live mostly in the shade — regardless of whether I photographed them when the sun was out or was behind the clouds.

Thanks for reading and taking a look!











Red and Yellow Daylilies (1 of 3)

From Daylilies: The Wild Species and Garden Clones, Both Old and New, of the Genus Hemerocallis by Arlow B. Stout:

“There is no doubt that from the dawn of civilization, in the Far East and in the West, flowers have been sought and treasured, at first for their practical value — imaginary or real — but later for their beauty. It seems to me that those of us who continue to search for the beauty of flowers bestow a blessing not only on ourselves but on others by influence. We have so ransacked the world for flowers that in the more temperate climates of north and south there is not a week of the year passes — except when frost holds all in its iron grip — when there is nothing in flower. Every year the pageantry of flowers starts with the snowdrop and aconite; before they are finished the earliest daffodils and hyacinths appear, to be quickly followed by the tulips and irises. As the air warms so the scene becomes even more enriched, working up to the magnificence of peonies, roses, and lilies.

“We never tire of the progression. The flowers greet us afresh in their season yearly…. Each flower exerts a spell upon us, each has its season, and the season of each is elongated by early and late varieties….

“But what have we in daylilies?
Hemerocallis flava, the Lemon Daylily, is not only the first to flower but it is also the first lily of any size to produce its blooms, which open in early June in England. We are then poised in anticipation of the opening of the lily season, and there is no doubt that this gracious, easily grown plant has considerable influence upon us. Moreover this lily is easy of culture and it produces a dense group of graceful leaves which remain in fresh green until their demise in a brief flash of yellow in autumn….

“The flowers are borne for about three or four weeks and have a pronounced and delicious fragrance. Through hybridization, daylilies now come upon us in a great variety of colors and sizes. These variations are not created by the ardent hybridists; rather do they select seedlings which please them, knowing full well that all colors are inherent in the different species and only await cross-pollination in order to be released. It is as well, when contemplating a great range of seedlings, to decide in advance what are the criteria that make a good daylily….

“Apart from saying that the light colors are most telling in the garden landscape I should not presume to dictate the choice. But it is interesting that the vast range of peach, pink, red, maroon, and mauve colorings derive from only one species,
H. fulva and its variety rosea. All the others are of some tone of yellow or orange. As the eye sweeps round the garden, it is these yellows and also the orange, apricot, and pale peach tints that are at once picked out….”


Hello!

I found another favorite daylily! Of those I’ve photographed at Oakland Cemetery, this one possesses some unique characteristics that we’ll explore in this post, and display in this post and the next two.

When I went looking for this variant during the first week of June, I found only one flower in bloom, so I guess I was a little early — obviously! Here’s where the plants live, at the base of a large monument, where I’ve seen them blooming nearly every year for the past five years, and where they’ve expanded to surround the statue.

Among the leaves were hints of many more flowers to come, but I went ahead and took a couple dozen photos of the single blooming flower from different angles, so that if I didn’t get back to them a few weeks later, I’d at least have images of the one flower. This post contains photos of that single flower; the next two posts, from a second visit toward the end of June, will show off the later bloomers.

Let’s talk about one of the images, which will inform how we see all of them.

The daylily below this paragraph displays a distinct ruffle around the edges of its petals, placing it in the sculpted category of daylily forms. That ruffle, however, isn’t an isolated element: it actually emanates from the midrib (the line that bisects each petal from the throat of the flower to the edges of a petal) that is raised slightly above the rest of the petal, then curves into a concave depression. This downward pressure on the petal causes the edges of the petals to twist like a partially formed corkscrew, the extent of that twisting more pronounced on petals with higher raised midsections. Note how the top three petals show much more ruffle than the petals underneath, which, by comparison, are nearly flat. The colors in the ruffle reflect those throughout the flower, including the lighter tones that would be visible underneath the flower if you turned it over. In this image, you are seeing the first bloom from this plant; behind it are about a dozen buds at various stages of growth, which the daylily will not open at once but on consecutive days — as its intention is to extend its blooming period (and provide pollination opportunities) for several weeks.

The late morning sun was ablaze during most of this first photo session, except when I took the five photos about halfway through the galleries where the brick walkway provided the background. That amount of light had both advantages and disadvantages. Since the sun’s yellow color aligns with the throat of the flower and its stamens, those flower sections got a nice yellow and orange glow that contrasts well with the rest of the flower. The petals, on the other hand, were flooded with too much yellow light, leading to both yellow color cast across the entire image and shifting the petal colors too far in the yellow (or warm) direction. In other words, they initially appeared to be too red, though it took a bit of color detective work to determine how to represent their colors realistically.

Here’s how the camera and Lightroom interpreted the scene, with only a white balance adjustment to remove some of the excess yellow light from the sun.

The flowers appear to be red, and you wouldn’t necessarily be wrong to present this image as having red flowers (after all, I did call this post “Red and Yellow Daylilies”). But what we’re actually seeing here is a shade of red — which we might even call reddish-orange — that doesn’t reveal the color variations that are present in the flower, because the scene is overpowered by yellow light from the sun. We can determine that, counterintuitively, by looking at parts of the image other than the flower itself: the leaves to the left of the bloom and the stone on the right side behind the flower buds. Even after correcting the image’s white balance, the leaves are still too yellow; and the stone on the right side should be a shade of gray to blue-gray, as represented in the image at the top of this post where I showed where these daylilies were growing.

With this evidence that the colors aren’t quite right, then, we can see what closer examination of the flower colors tells us — and whether it’s consistent with or contradicts our observations about the image’s colors overall. Passing Lightroom’s color picker over the flower petals shows us that they are primarily blends of two colors: magenta and red, and that these two colors are present in roughly equal proportions. This is a much different color presentation than in one of my previous posts — Pink Daylilies and Magenta Colors — where the magenta to red relationship was perhaps 80% magenta and 20% red, so those flowers appear pink to the eye rather than red.

Now that we know the colors need to be corrected — our mental shorthand for this is that the image is too yellow — correcting it is pretty straightforward: reducing yellow and green saturation, and adding a bit of bounce to magenta by shifting it toward red, this shift supported by the fact that the shades of magenta we find are those which are darker or redder than the base (somewhat pinkish) magenta color. These changes affect three sections of the photo I mentioned above: the green leaves come to demonstrate a more natural, consistent green color; the stone behind the buds turns gray or blue-gray; and the flower now shows a proper range of colors between magenta and red, instead of mostly red:

As you might conclude if you read the excerpt up-top from Stout’s 1934 book Daylilies: The Wild Species and Garden Clones, Both Old and New, of the Genus Hemerocallis, the potential for a daylily to produce this stunning combination of red, magenta, yellow, and orange colors is derived from its genetic heritage. While I don’t know the genetic background of this specific flower, most of our daylily color combinations are derived in part from the yellows produced by native or naturalized versions of Hemerocallis flava, and shades of orange provided by native or naturalized versions of Hemerocallis fulva. To that, Stout adds the probable contribution of a variant called Hemerocallis fulva var. rosearosea, in this case, encompassing a range of color tones that enabled breeders to essentially mix primary yellow and secondary orange with colors such as peach, pink, maroon, mauve, and apricot — or to produce complex combinations like the red and magenta present in the daylilies I photographed for these posts.

Thanks for reading and taking a look!








Orange Double Daylilies (2 of 2)

From A Passion for Daylilies: The Flowers and the People by Sydney Eddison:

“Daylilies are native to China, Japan, Korea, and Eastern Siberia. Long before the birth of Christ, they were mentioned as an anodyne for grief in the religious writings of Confucius, China’s greatest philosopher. By the fourth century A.D., they were being used to relieve physical as well as mental pain. A Chinese herbal of the period makes extravagant claims for juice extracted from their roots: ‘It quiets the five viscera [the heart, lung, liver, kidney, and stomach], benefits the mind and strengthens the will power, gives happiness, reduces worry, lightens the body weight and brightens the eye…. Now people often collect the young shoots and serve as a pot green. It gives a pleasant feeling in the chest.’ In addition, the thick roots were boiled and eaten like potatoes.

“It wasn’t until the seventeenth century that daylilies became cherished ornamentals for the pleasure garden. In a Chinese gardening treatise published in 1688, author Chen Hao-tzu describes a plant with leafless flower stalks (scapes in daylily parlance) and arching foliage: ‘The flower when it first appears, resembles the beak of a crane, then it opens with six radiant segments, yellow dusted red, opening in the morning and withering by night.’ This description still fits some of the old-fashioned daylilies.

“No one knows by what circuitous path these plants came to Europe in time to be recorded and described in medieval herbals…. However they traveled, the ubiquitous orange daylily (
Hemerocallis fulva) and its yellow companion, the lemon lily (H. Lilioaspbodelus) had arrived in Europe by the sixteenth century. A hundred years later, this same pair crossed the Atlantic with pilgrims and took root in American soil. From the eastern seaboard, the tougher, more adaptable tawny orange daylily moved west with the settlers, earning itself the name of homestead lily. And during the late nineteenth century, a root or two of this hardy species wound up alongside the porch of a midwestern farmhouse. Here, it became an object of interest to young Arlow Burdette Stout, whose mother had planted it….

“At the beginning of the twentieth century, a handful of breeders using half a dozen wild species were producing yellow and orange hybrids. Today, hundreds of hybridizers working with an enormous gene pool are producing a thousand new cultivars a year. (Cultivar combines the words cultivated and variety to distinguish garden plants from naturally occurring species.) Previously unknown colors and designs are now emerging from nurseries and backyards all around the country, thanks to Dr. Stout and
Hemerocallis fulva.”


Hello!

This is the second of two posts with photos of a double form of the daylily Hemerocallis fulva from Oakland Cemetery. The first post is Orange Double Daylilies (1 of 2).

Unlike those in the previous post, where they were planted as part of a precisely designed garden memorial…

… I found the daylilies in these photos in one of the “wild” sections of the property, where several different kinds of plants and flowers live together in a transitional space, arranged and layered for visual appeal. Their presence among densely planted variegated grasses produced interesting contrasts between the bright orange flowers and the green and white or gray stripes in the background, while that grass hid most of the daylily stems and leaves. I took about half of these photos using the gray/green grass as a backdrop, then changed positions so I could focus more closely on individual blooms.

The impressive height of these daylilies meant that they were easy to photograph not far below eye level, so zooming in reveals more of the structure and detail than I could capture from a distance in the previous post. Here we get a better look at not only the blended shades of orange, yellow, and red present in each flower, but also get a closer look at their structure. The layered petals appear to unfold like ribbons, with lower petals terminating in flat or rectangular shapes, and upper petals drawn to a point that is common to many daylilies, including the single form of Hemerocallis fulva itself. In early stages of blooming, each flower has a few upright petals surrounding and protecting its young stamens and pistils, which fold down to the lower layers as these reproductive segments strengthen and mature.

The shades of orange in these daylilies are remarkably stable; you can increase or decrease saturation substantially in Lightroom and still end up with an image that contains adequate contrast, detail, and color variation. That’s actually very common among orange flowers, whose colors — spectrally wide-ranging between yellow and red — are densely packed into the flower petals’ cells. Imagine, if you will, how these colors don’t just exist at the surface level, but at multiple microscopic levels stacked on top of each other. Luckily, our eyes (and our cameras) detect and perceive all these layers, even if they don’t actually register to our vision as multi-layered or multi-dimensional.

Thanks for reading and taking a look!